

U.S. EPA "State of VI Science" Workshop

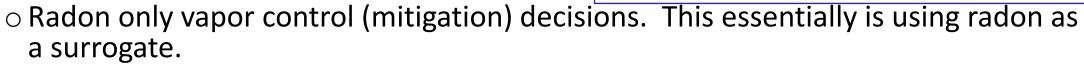
How Vapor Intrusion Data Measured by Communities and Supported by Regulators Can Create "Soil Gas Safe Communities"

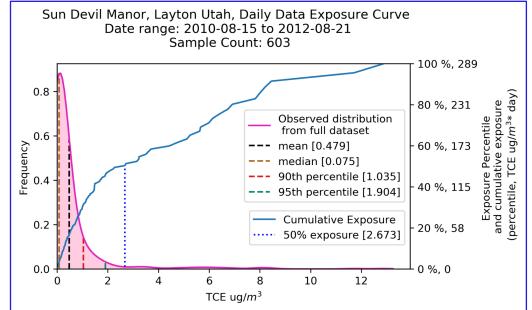
Results and Interpretation of Sampling Strategy and Equivalent Protection Cost Effectiveness Analyses Chris Lutes, Jacobs A.J. Kondash, RTI International Chase Holton, Geosyntec

31st Annual International Conference on Soil, Water, Energy, and Air, A Virtual Conference, March 15, 2022

consultants

Jacobs Geosyntec[>]

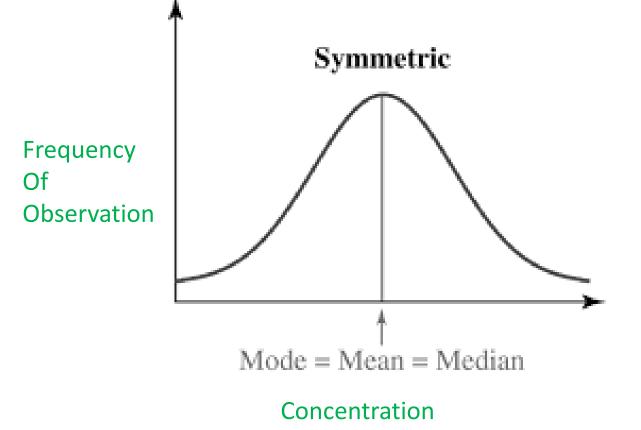

Presentation archived at https://iavi.rti.org/


Presentation Outline

- How the effectiveness of various sampling scheduling approaches were tested. (Assuming that all of the sites are inclusion zone).
- How the various sampling scheduling approaches performed at specific sites
- How easy is it to observe various metrics (indicators RME)

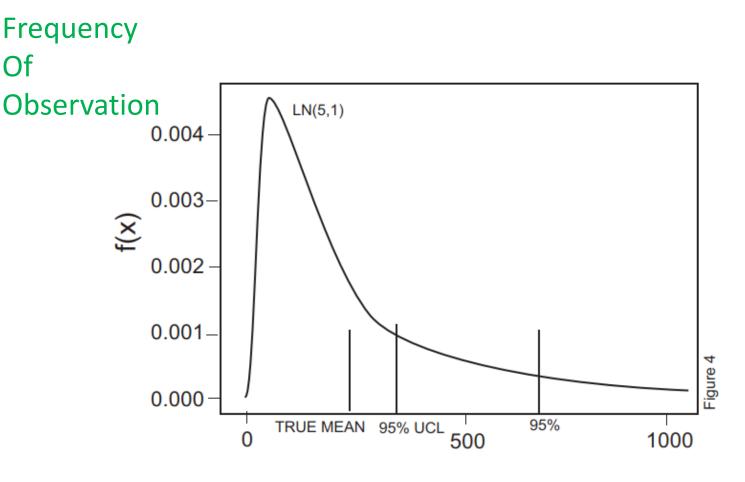
mean concentration, 95th UCL on mean,
 90th percentile, 95th percentile,
 50% total exposure point?

- Relative costs of equivalent protection:
 - \circ Random sampling
 - \circ Seasonal sampling
 - \odot I&T (radon in this case) guided sampling

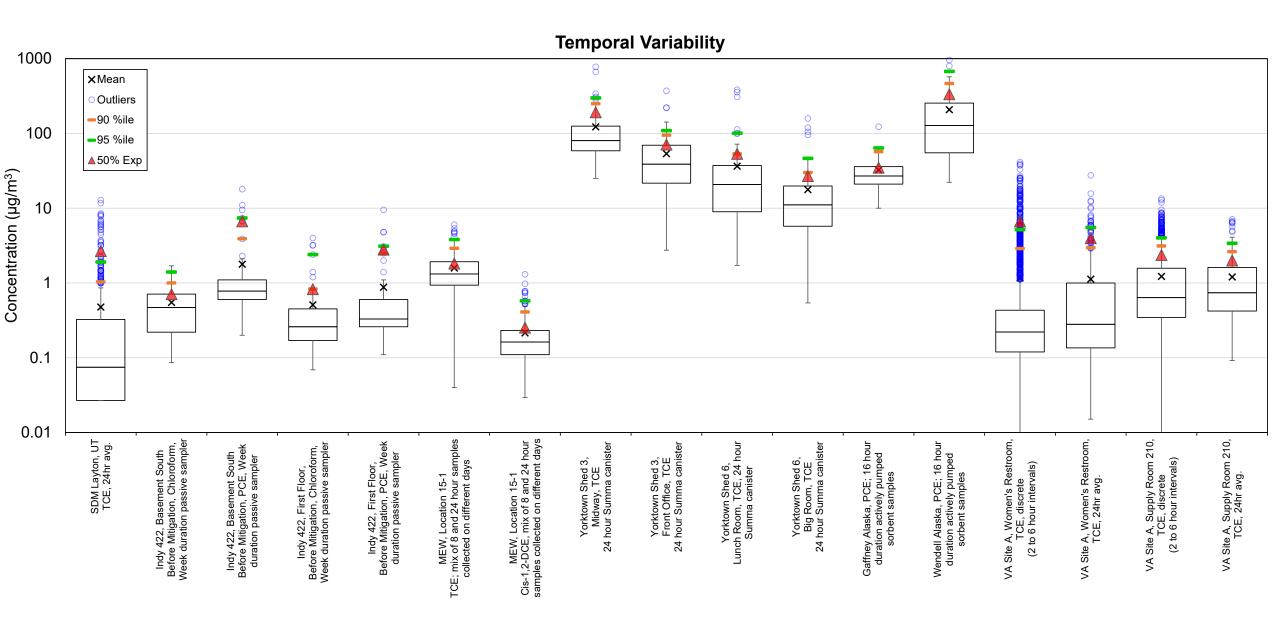

The Performance of Purely Random Sampling Can Be Determined Mathematically if the Metric is the 95th Percentile of the Distribution (noncancer criteria assumption)

- You have a 5% chance with one random sample of observing the >95th percentile of any distribution.
- You have a 9.7% chance with two random samples of observing the >95th percentile of any distribution.

- You have a 18.5% chance with four random samples of observing the >95th percentile
- You have a 95% chance with 58 random samples of observing the 95th percentile once


If The Distribution is Symmetrical (or Normal) It is Relatively Easy to See the Mean (cancer risk criteria) With a Few Samples

With a symmetrical distribution you have a 50% chance to be above the mean with at least one sample and a 75% chance to be above the mean with at least one of two samples.


But: It is Much Harder to Observe the True Mean With a Small Number of Samples When the Distribution is Skewed - as it Often Is in Environmental Samples

Of

Concentration

Figure Reprinted from EPA/600/R-97/006

Key point: Degrees of temporal variability across sites compared. Various upper end measures in skewed distributions are shown.

Results – Sampling Analysis

- These are results from a recently completed analysis, that have not been peer reviewed
- The sampling analysis results are expressed as the percentage chance that each sampling approach provides of observing the target metric in a particular dataset.
- Results are presented by building after a brief summary of the building characteristics

Results – Equal Protection Analysis

- Four strategies are compared: Random sampling, Seasonal sampling, ITS Driven Sampling and Mitigation based solely on Radon > ambient.
- Recall from AJ's presentation that assessment stops when mitigation is required OR when
 - For cancer a set of at least 12 samples shows 95% UCL on mean below action level.
 - 58 samples for noncancer show no exceedance (random sampling 95th percentile)
- Currently the results of decision making for cancer and noncancer risks are presented separately. In reality the same data is used for both determinations, so the assessment will stop when either criteria requires mitigation.

Data Sets Analyzed

(Sun Devil Manor and VA Site A TCE, and Indianapolis PCE all μ g/m³)

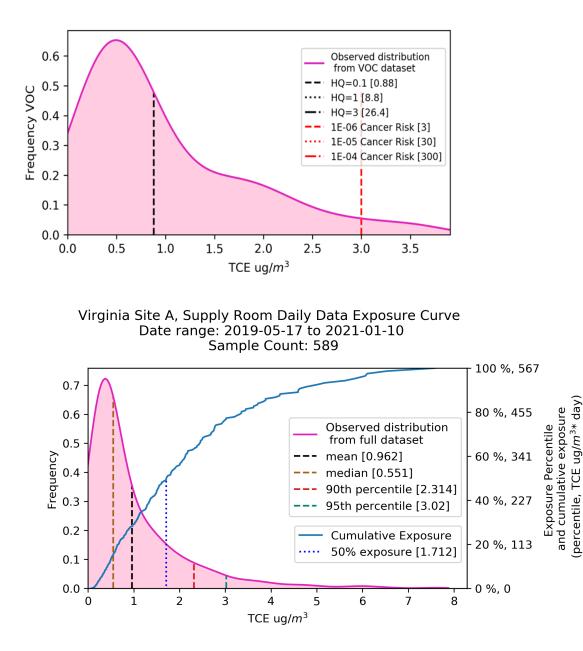
			50th				
			Percentile				
			of				
			Cumulative	95th			
		95th	Total	Percentile			Number
		UCL on	Exposure	of	Date	Date	of
Site/Averaging Duration	Mean	Mean	Curve	Dataset	start	end	samples
Sun Devil Manor Daily	0.48	0.58	2.67	1.90	8/15/10	8/21/12	603
Sun Devil Manor Weekly	0.48	0.67	1.27	2.57	8/15/10	8/21/12	95
Indy Base N Week	0.49	0.54	0.53	0.77	3/30/11	2/27/12	45
Indy Base S Day	1.26	1.34	1.29	2.20	8/9/11	2/27/12	136
Indy Base S Week	0.72	0.80	0.75	1.28	3/30/11	2/27/12	49
Indy First Floor Daily	0.61	0.65	0.66	1.08	8/9/11	2/27/12	136
Indy First Floor Weekly	0.36	0.42	0.40	0.77	3/30/11	2/27/12	49
VA Site A Daily Womens BR	0.91	1.08	3.66	4.42	5/17/19	1/10/21	589
VA Site A Weekly Womens BR	0.90	1.15	2.02	3.08	5/17/19	1/10/21	87
VA Site A Daily Supply Room	0.96	1.05	1.71	3.02	5/17/19	1/10/21	589
VA Site A Weekly Supply Room	0.96	1.13	1.62	2.67	5/17/19	1/10/21	87
VA Site A Daily Location 08	1.27	1.46	2.61	5.31	4/19/19	2/3/20	230

VA Site A – Building Characteristics

- ~120,000 ft² building constructed of brick with a poured concrete slab and divided into three large bays. The slab is generally 6 to 8 inches thick.
- Heat provided by steam-fired unit heaters with overhead fans in the warehouse/storage bays.
- No centralized cooling system within the warehouse space. During Summer, bay doors are kept open and portable fans provide airflow.
- Various wood-framed office areas constructed separately within the bays with separate ceilings and HVAC units.
 - Separate spaces operate as "zones within larger zones"
- 18 months of frequent GC Concentration observations used.
- Soil Source

VA Site A – One Daily Sample In Supply Room

Concentrations µg/m ³ :	0.96	1.05	1.71	3.02
Rule Description	one sample ≥ true mean	one sample will be ≥ 95% UCL of the mean	one sample > the 50th percentile of the cumulative exposure curve	one sample ≥ the 95th percentile of underlying distribution
Only sample outside of heating season	12%	11%	4%	1%
Random sampling	33%	31%	17%	5%
Indoor outdoor differential temperature of 15F or more	35%	33%	18%	6%
Only sample in heating season	67%	64%	39%	13%
Radon greater than 90th percentile of heating season radon data	79%	75%	50%	25%
Radon concentration greater than 2 pCi/L radon	100%	83%	50%	50%


- This zone has "classical stack effect" behavior – thus our temperature, seasonal and radon sampling approaches generally perform better here than at other locations/sites.
- Sampling approaches calling for sampling only during the heating season OR with> 2 pCI/l or >90% radon performed well

VA Site A – Four Daily Samples In Supply Room

Concentrations µg/	/m ^{3:} 0.96	1.05	1.71	1.71	3.02
	At least one		At least one of 4	The mean of 4 drawn samples >	At least one of the four samples
	sample of the	At least one of	samples > the	50% exposure	> the 95th
	four samples	the four samples	50th percentile of	value of the	percentile of the
	taken ≥ true	taken ≥ the 95%	the cumulative	underlying	underlying
Rule Description	mean	UCL of the mean	exposure curve	distribution	distribution
1 sample in heating					
season, 1 outside of					
heating season	77%	73%	39%	39%	19%
Random sampling	80%	77%	52%	10%	19%
Only sample in heating					
season	99%	98%	86%	44%	42%
Avg temp decrease of 5F					
or more	76%	72%	42%	6%	14%
Low temp decrease of 5F					
or more	78%	75%	46%	7%	15%
Indoor outdoor differential					
temperature of 15F or					
more	82%	80%	55%	11%	20%
Day over day radon					
concentration change of					
+0.5 pCi/L or more	99%	98%	78%	60%	71%
Radon greater than 90th					
percentile of full radon					
dataset	100%	99%	93%	61%	63%

 Four random samples provides reasonable performance with regard to the true mean but not 50% cumulative exposure.

 Radon guided and heating season driven strategies most beneficial.

VA Site A Supply Room : Distribution and Mitigation Decision Making

- Industrial screening levels for TCE used
- The majority of individual measurements are below the 10⁻⁶ TCR screening level and many of the individual measurements are near the HQ=0.1 screening level
- The mean is well below the 10⁻⁶ TCR screening level
- The 95th percentile daily concentration lies between HQ=0.1 and HQ=1
- Thus, if the full dataset was available mitigation would only be performed if the HQ=0.1 noncancer screening level was used as an action level

VA Site A Supply Room- Economic Analysis Results

	-	-		-		-
Risk Screening Metric	Sampling Rule	Samples	Sample Cost	Mitigate?	Mitigation	Total Cost
1e-4canrisk	ITS Triggered	12	\$137,584	No	\$0	\$137,584
1e-4canrisk	Random	12	\$134,784	No	\$0	\$134,784
1e-4canrisk	Seas	96	\$1,078,272	No	\$0	\$1,078,272
1e-5canrisk	ITS Triggered	12	\$137,584	No	\$0	\$137,584
1e-5canrisk	Random	12	\$134,784	No	\$0	\$134,784
1e-5canrisk	Seas	96	\$1,078,272	No	\$0	\$1,078,272
1e-6canrisk	ITS Triggered	12	\$137,584	No	\$0	\$137,584
1e-6canrisk	Random	12	\$134,784	No	\$0	\$134,784
1e-6canrisk	Seas	96	\$1,078,272	No	\$0	\$1,078,272
HQ=0.1	ITS Triggered	1	\$14,032	Yes	\$76,939	\$90,971
HQ=0.1	Random	2	\$22,464	Yes	\$76 <i>,</i> 939	\$99,403
HQ=0.1	Seas	2	\$22,464	Yes	\$76 <i>,</i> 939	\$99,403
HQ=1	ITS Triggered	58	\$654,256	No	\$0	\$654,256
HQ=1	Random	58	\$651,456	No	\$0	\$651,456
HQ=1	Seas	58	\$651,456	No	\$0	\$651,456
HQ=3	ITS Triggered	58	\$654,256	No	\$0	\$654,256
HQ=3	Random	58	\$651,456	No	\$0	\$651,456
HQ=3	Seas	58	\$651,456	No	\$0	\$651,456
Radon Over Ambient	Radon Over Am	2	\$2,800	Yes	\$76,939	\$79,739

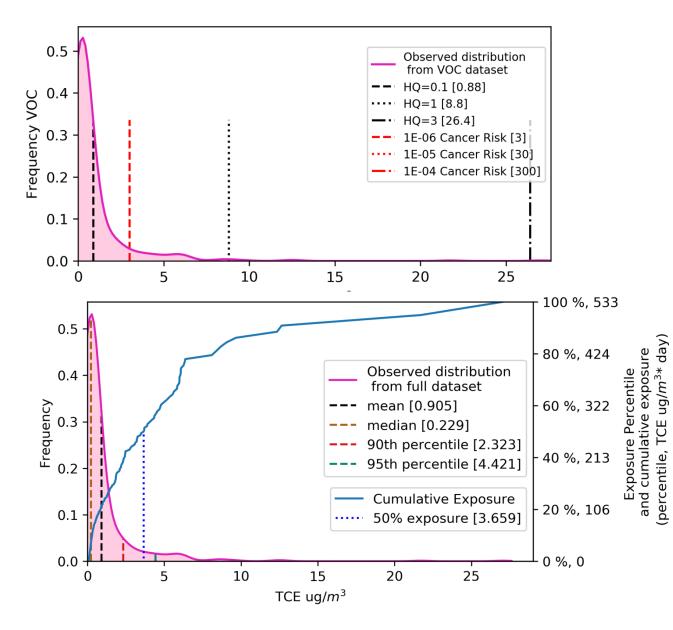
- Random and ITS guided sampling approaches are considerably less expensive than the seasonal based sampling.
- The three sampling approaches that include active VOC sampling produce the "correct" result of mitigating only when HQ=0.1 is the action level.
- Radon only decision making led to mitigation, which was conservative but low cost.

Note: costs are for the 7,200 square foot building that has data like VA site A – not for this actual building or room.

Seas = Seasonal

VA Site A – One Daily Sample in Women's Bathroom

Concentrations µg/m ³ :	0.91	1.08	3.66	4.42
			one sample >	one sample ≥
		one sample	the 50th	the 95th
		will be \geq 95%	percentile of the	percentile of
	one sample	UCL of the	cumulative	underlying
Rule Description	≥ true mean	mean	exposure curve	distribution
Only sample outside of heating				
season	9%	8%	2%	2%
Radon greater than 90th				
percentile of heating season				
radon data	10%	10%	4%	4%
Random sampling	20%	19%	7%	5%
Indoor outdoor differential				
temperature of 15F or more	23%	21%	7%	6%
Only sample in heating season	40%	36%	14%	10%
Differential pressure >2.49 Pa				
into the building	47%	44%	17%	13%


- Nontypical seasonal pattern – possible preferential pathway case
- Heating season and differential pressure outperform random
- No strategy gives good odds of getting over 50th percentile total exposure or 95th percentile of distribution
- Radon performed poorly in this portion of the dataset

VA Site A – Four Daily Samples in Women's Bathroom

Concentrations $\mu g/m^3$:	0.91	1.08	3.66	3.66	4.42
Rule Description	At least one sample of the four samples taken will equal or exceed the true mean concentration	At least one of the four samples taken will be equal to or exceed the 95% UCL of the mean of the VOC distribution	At least one of 4 samples will exceed the 50th percentile of the cumulative	The mean of 4 drawn samples will exceed the 50% exposure value of the underlying distribution (simulated 10,000 4 sample draws)	At least one of the four samples will exceed the 95th percentile of the underlying distribution
Radon greater than 90th	concentration		exposure curve	4 sample uraws)	
percentile of full radon dataset	26%	26%	9%	0%	9%
1 sample in heating season, 1					
outside of heating season	66%	55%	27%	46%	16%
Random sampling	60%	56%	24%	2%	19%
Indoor outdoor differential					
temperature of 15F or more	64%	61%	26%	3%	20%
Only sample in heating season	87%	84%	46%	8%	36%
Differential pressure >2.49 Pa					
into the building	92%	91%	53%	13%	43%

- Nontypical seasonal pattern – possible preferential pathway case
- Heating season and differential pressure outperform random
- No strategies give good odds of getting over 50th percentile total exposure or 95th percentile of distribution
- Radon performed poorly in this portion of the dataset

VA Site Women's Restroom Distribution and Mitigation Decision Making

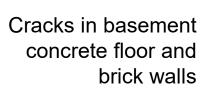
- Industrial screening levels for TCE used
- The mean of the full distribution is below 10⁻⁶ so mitigation is not needed for cancer.
- The 95th percentile is above HQ= 0.1 but below HQ=1.
- Thus if the full data set was available mitigation is only needed for noncancer if HQ=0.1 is used as the action level.

VA Site Women's Restroom – Economics Results

Risk Screening					Mitigation	
Metric	Sampling Rule	Samples	Sample Cost	Mitigate?	Cost \$	Total Cost
1e-4canrisk	ITS Triggered	12	\$137,584	No	\$0	\$137,584
1e-4canrisk	Random	12	\$134,784	No	\$0	\$134,784
1e-4canrisk	Seas	96	\$1,078,272	No	\$0	\$1,078,272
1e-5canrisk	ITS Triggered	12	\$137,584	No	\$0	\$137,584
1e-5canrisk	Random	12	\$134,784	No	\$0	\$134,784
1e-5canrisk	Seas	96	\$1,078,272	No	\$0	\$1,078,272
1e-6canrisk	ITS Triggered	12	\$137,584	No	\$0	\$137,584
1e-6canrisk	Random	12	\$134,784	No	\$0	\$134,784
1e-6canrisk	Seas	96	\$1,078,272	No	\$0	\$1,078,272
HQ=0.1	ITS Triggered	10	\$115,120	Yes	\$76,939	\$192,059
HQ=0.1	Random	3	\$33,696	Yes	\$76,939	\$110,635
HQ=0.1	Seas	3	\$33,696	Yes	\$76,939	\$110,635
HQ=1	ITS Triggered	58	\$654,256	No	\$0	\$654,256
HQ=1	Random	58	\$651,456	No	\$0	\$651,456
HQ=1	Seas	56	\$628,992	No	\$0	\$628,992
HQ=3	ITS Triggered	58	\$654,256	No	\$0	\$654,256
HQ=3	Random	58	\$651,456	No	\$0	\$651,456
HQ=3	Seas	58	\$651,456	No	\$0	\$651,456
Radon Over Ambier	Radon Over Ambient	58	\$651,456	No	\$0	\$2,800

• Either ITS triggered or random sampling gets to the conclusion that cancer risk is not a concern in the minimum number of rounds assessed.

- Costs are similar for the noncancer.
- But radon only is by far lowest cost.


Note: costs are for the 7,200 square foot building that has data like VA site A – not for this actual building or room.

Seas = Seasonal

Indianapolis Duplex

- Study duplex on 1915 Sanborn Map
- Basement +2 overlying floors
- Unoccupied, unfurnished
- Heated and unheated sides
- Top 7-8 ft: topsoil, cinders (fill); sandy silty clay loam (till).
- 8-25 ft: sand, gravel, cobbles (very coarse outwash).
- Depth to water (10.5 to 18.5 ft) rapidly fluctuates with nearby creek
- Year long weekly passive sampling campaign
- Selected periods of high frequency GC Data

Indianapolis Basement South Single Daily Sample

Concentrations $\mu g/m^3$:	1.26	1.34	1.29	2.20
			one sample >	one sample ≥
		one sample will		the 95th
	one sample ≥	be ≥ 95%	percentile of the	percentile of
	true mean (1.26	UCL of the	cumulative	underlying
Rule Description	μg/m ³)	mean	exposure curve	distribution
Only sample outside of heating season	18%	9%	10%	0%
Radon greater than 90th percentile of				
heating season radon data	24%	19%	19%	10%
Random sampling	40%	33%	36%	5%
Differential pressure >2.49 Pa into the				
building	47%	47%	47%	7%
DT of 15F or more AND DP >2.49 Pa				4004
into the building	50%	50%	50%	10%
Day over day radon concentration	400/	2004	400/	70/
change of +0.5 pCi/L or more	48%	38%	40%	
Only sample in heating season	61%	57%	61%	10%
Radon greater than 90th percentile of				
heating season radon and heating	500/	500/	F 00/	050/
season	50%	50%	50%	25%

- Many metrics here provided some benefit over random
- Suggests a stack effect mechanism. Evidence suggests preferential pathway to subslab plenum.
- Increasing radon significantly outperformed 90th percentile radon in this case.

Indianapolis Basement South – 4 Daily Samples

1.29

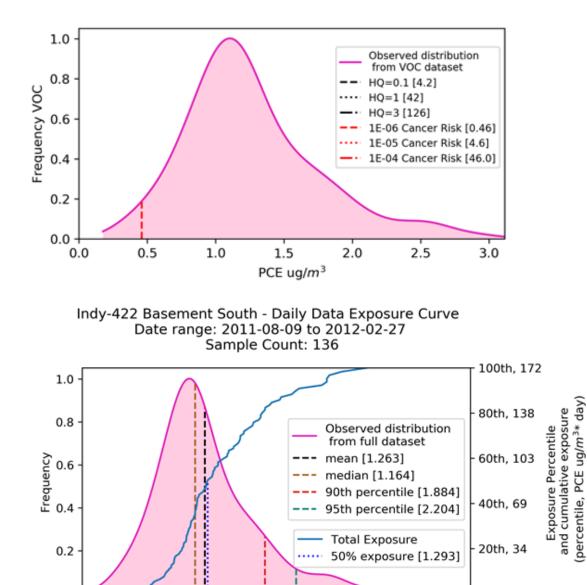
1.29

2.20

1.34

ast one of our bles> the entile of
oles> the
entile of
entile of
erlying
bution
10%
19%
20%
48%
35%
39%
27%

1.26


Concentrations $\mu g/m^3$ *:*

- Note this dataset is mostly from winter and fall so random isn't truly random over the whole year.
- Heating season, radon and differential pressure I&T are all useful.

Indianapolis Basement South Daily Distribution and Mitigation Decision Making

0,0

4.0

2.5

3.0

3.5

2.0

PCE ug/m³

0.0

0.0

0.5

1.0

1.5

- The constituent of concern is PCE, thus the observed concentrations only exceed the 10⁻⁶ risk-based screening level (and only based on CA toxicity values)
- All of the other risk-based screening levels are not shown because they are off scale.
- The true mean of 1.26 μ g/m³ is between the 10-6 and 10-5 screening levels
- The 95th percentile of 2.2 μ g/m³ is below the HQ = 0.1 value.
- Thus, the structure should not be mitigated based on the full dataset unless a cancer risk action level of 10⁻⁶ is chosen.
- Note that correct decision might well be different if either radon or chloroform risks were considered.

Indianapolis Basement South Daily Data Economic Analysis Results

Risk Screening Metric	Sampling Rule	Samples	Sample Co	Mitigate?	Mitigation	Total Cost
1e-4canrisk	ITS Triggered	12	\$66,600	No	\$0	\$66,600
1e-4canrisk	Random	12	\$64,800	No	\$0	\$64,800
1e-4canrisk	Seas					
1e-5canrisk	ITS Triggered	12	\$66,600	No	\$0	\$66,600
1e-5canrisk	Random	12	\$64,800	No	\$0	\$64,800
1e-5canrisk	Seas					
1e-6canrisk	ITS Triggered	2	\$12,600	Yes	\$11,500	\$24,100
1e-6canrisk	Random	2	\$10,800	Yes	\$11,500	\$22,300
1e-6canrisk	Seas	2	\$10,800	Yes	\$11,500	\$22,300
HQ=0.1	ITS Triggered	58	\$315,000	No	\$0	\$315,000
HQ=0.1	Random	58	\$313,200	No	\$0	\$313,200
HQ=0.1	Seas	58	\$313,200	No	\$0	\$313,200
HQ=1	ITS Triggered	58	\$315,000	No	\$0	\$315,000
HQ=1	Random	58	\$313,200	No	\$0	\$313,200
HQ=1	Seas	58	\$313,200	No	\$0	\$313,200
HQ=3	ITS Triggered	58	\$315,000	No	\$0	\$315,000
HQ=3	Random	58	\$313,200	No	\$0	\$313,200
HQ=3	Seas	58	\$313,200	No	\$0	\$313,200
Radon Over Ambient	Radon Over Ambient	1	\$1,800	Yes	\$11,500	\$13,300

• The lowest costs are achieved when the most stringent cancer risk level is considered. This counterintuitive result occurs because a decision to undertake mitigation is made with only a small number of sample rounds and sampling costs become more important than mitigation costs with the higher risk screening levels.

• The non-cancer results for this case always default to the probability based, distribution independent, data independent default of 58 samples to decide that no mitigation is needed

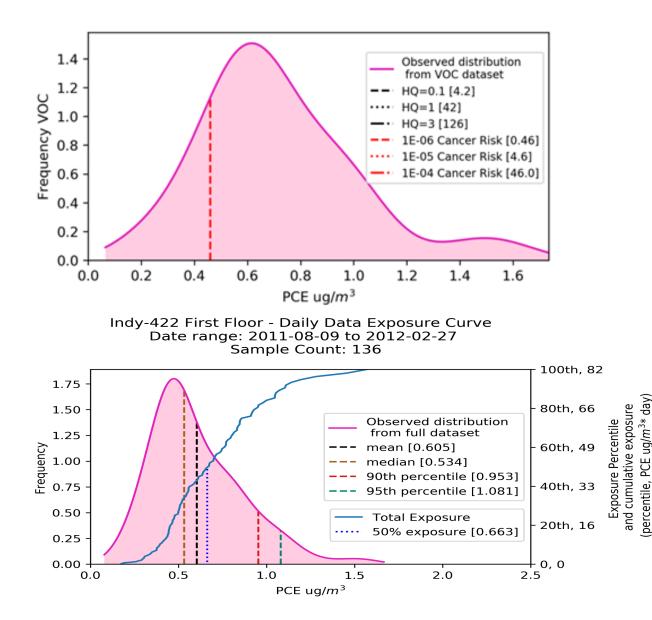
• It is likely that non-cancer risks would not be the primary factor in decision making at a PCE site using CA toxicity values and thus the economics would be controlled only by the cancer risk assessment.

Indianapolis First Floor – One Daily Sample

Concentrations μg/m³: 0.61 0.65 0.66 1.08

Rule Description	one sample ≥ true mean	one sample will be ≥ 95% UCL of the mean	one sample > the 50th percentile of the cumulative exposure curve	one sample ≥ the 95th percentile of underlying distribution
Only sample outside of				
heating season	28%	27%	24%	0%
Random sampling	40%	36%	35%	5%
Indoor outdoor differential				
temperature of 15F or more	49%	42%	41%	9%
Only sample in heating season Day over day radon	61%	45%	45%	10%
concentration change of +0.5 pCi/L or more	49%	46%	46%	9%
Radon greater than 90th percentile of non-hs radon dataset AND outside heating				00%
season	78%	78%	78%	0%
Radon greater than 90th percentile of heating season radon data	75%	70%	65%	10%
Radon greater than 90th percentile of heating season radon and heating season	71%	57%	57%	29%

- Heating season and radon-based strategies perform well.
- This is the only case where radon outside of the heating season is a strong predictor.


Indianapolis First Floor – Four Daily Samples

Concentrations µg/m ³	³ : 0.61	0.65	0.66	0.66	1.08
Dula Deserintian	At least one sample of the four samples taken ≥ the true	At least one of the four samples ≥ the 95% UCL of	At least one of 4 samples > the 50th percentile of the cumulative	underlying	the four samples > the 95th
Rule Description 1 sample in heating	mean	the mean	exposure curve	distribution	percentile
season, 1 outside of					
heating season	66%	60%	58%	36%	10%
Random sampling	88%			30%	10%
Radon concentration	0070	0470	0270	5070	1370
greater than 2 pCi/L radon	92%	89%	87%	39%	22%
Radon greater than 90th					
percentile of full radon					
dataset	100%	100%	99%	77%	24%
Day over day radon concentration change of					
+0.5 pCi/L or more	94%	93%	93%	55%	31%
Only sample in heating season	95%	91%	91%	45%	35%
Indoor outdoor differential temperature of 15F or more	94%	89%	88%	42%	33%
Radon greater than 90th percentile of heating season radon and heating					
season	100%	100%	100%	86%	86%

 Data set predominantly winter so random odds are better then normal.

 Heating season, temperature and radon are beneficial I&T

Indianapolis First Floor Daily Distribution and Mitigation Decision Making

- Since the constituent of concern is PCE, the observed concentrations only exceed the 10⁻⁶ cancer risk-based screening level and only then using CA toxicity values.
- All of the other risk-based screening levels are not shown because they are off scale.
- The mean concentration is only modestly above the 10⁻⁶ TCR screening level and that the 95th percentile is well below the HQ=0.1 screening level.
- Thus, if the whole dataset was available, mitigation would only be implemented if decisions were being made based on the 10⁻⁶ TCR screening level.
- If radon or chloroform was included in the analysis the mitigation decision might differ.
- The weekly data might lead to a different decision since it was collected over a larger time period.

Indianapolis First Floor Daily Economics Results

Risk Screening			Sample		Mitigatio	Total
Metric	Sampling Rule	Samples	Cost	Mitigate?	n Cost	Cost
1e-4canrisk	ITS Triggered	12	\$66,600	No	\$0	\$66,600
1e-4canrisk	Random	12	\$64 <i>,</i> 800	No	\$0	\$64,800
1e-4canrisk	Seas			No	\$0	
1e-5canrisk	ITS Triggered	12	\$66,600	No	\$0	\$66,600
1e-5canrisk	Random	12	\$64 <i>,</i> 800	No	\$0	\$64,800
1e-5canrisk	Seas			No	\$0	
1e-6canrisk	ITS Triggered	3	\$18,000	Yes	\$11,500	\$29,500
1e-6canrisk	Random	4	\$21,600	Yes	\$11,500	\$33,100
1e-6canrisk	Seas	4	\$21,600	Yes	\$11,500	\$33,100
HQ=0.1	ITS Triggered	58	\$315,000	No	\$0	\$315,000
HQ=0.1	Random	58	\$313,200	No	\$0	\$313,200
HQ=0.1	Seas	58	\$313,200	No	\$0	\$313,200
HQ=1	ITS Triggered	58	\$315,000	No	\$0	\$315,000
HQ=1	Random	58	\$313,200	No	\$0	\$313,200
HQ=1	Seas	58	\$313,200	No	\$0	\$313,200
HQ=3	ITS Triggered	58	\$315,000	No	\$0	\$315,000
HQ=3	Random	58	\$313,200	No	\$0	\$313,200
HQ=3	Seas	58	\$313,200	No	\$0	\$313,200
Radon Over Ambien	Radon Over Amb	1	\$1,800	Yes	\$11,500	\$13,300

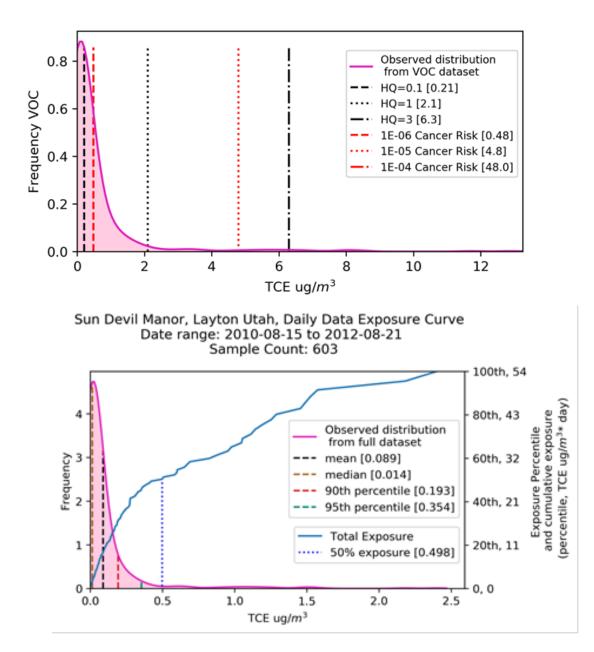
- Since this is a PCE site primarily, the noncancer risks would probably not factor strongly in the sampling decision making.
- The most stringent cancer risk level results in lower costs because early mitigation is cheaper then 12 sample rounds.
- Radon only monitoring is the cheapest alternative even though it leads to mitigation.

Sun Devil Manor, Layton, Utah

- Two-story, split-level home on gradual slope, built in 1991
- Occupied 10-30% of time, HVAC settings for full time occupancy
- Fine sandy silt with fine sand stringers
- Depth to water 10-12 ft bgs, 10-50 μ g/L TCE
- Over two years indoor air sampling, sampling at 2– 4-hour intervals, converted to 24- hour data set
- Conduit VI pathway, land drain to subslab to indoor air

Sun Devil Manor – One Daily Sample

Concentrations µg/m ³ :	0.48	0.58	2.67	1.90
			one sample >	one sample ≥
		one sample will		the 95th
		be \geq 95%	percentile of the	
	one sample ≥	UCL of the	cumulative	underlying
Rule Description	true mean	mean	exposure curve	distribution
Only sample outside of heating				
season	4%	4%	0%	0%
Random sampling	19%	17%	4%	5%
Differential pressure >2.49 Pa into	1370	1770		570
the building	43%	29%	0%	0%
Only sample in heating season	38%	32%	9%	11%
Day over day radon concentration				
change of +0.5 pCi/L or more	83%	83%	33%	33%
Radon greater than 90th percentile				
of heating season radon data	89%	84%	32%	42%
Radon greater than 90th percentile				
of heating season radon and				
heating season	89%	84%	32%	42%


- Heating season only modestly beats random sampling
- Data set includes more heating season data than non-heating season data; this makes random sampling perform better then it ordinarily would have.
- Radon based measures are strong performers

Sun Devil Manor – Four Daily Samples

Concentrations µg/m ³ :	0.48	0.58	2.67	2.67	1.90
			At least one of 4	The mean of 4	At least one of
	At least one	At least one of	At least one of 4 samples > the	> the 50%	the four samples > the
	sample of the four samples	the four samples taken	50th percentile of the	exposure value of the	95th percentile of the
	taken ≥ the true	will \geq the 95%	cumulative	underlying	underlying
Rule Description+N5N1C1:NC1:N21	mean	UCL of the mean		distribution	distribution
Random sampling	58%	52%	16%	2%	19%
Avg temp decrease of 5F or more	57%	51%	17%	2%	20%
1 sample per season	100%	100%	2%	4%	2%
1 sample in heating season, 1 outside of heating season	45%	38%	7%	19%	7%
Only sample in heating season	85%	79%	32%	6%	38%
Radon greater than 90th percentile of full radon dataset	100%	100%	61%	13%	78%
Radon greater than 90th percentile of heating season radon and heating					
season	100%	100%	82%	32%	91%

- Heating season sampling and Radon (I&T) work well
- Radon combined with heating season is the best performer

SDM Daily Distributions and Mitigation Decisions

- Individual samples from the distribution are frequently near the TCR 10-6 and HQ = 0.1 lines.
- The 95th percentile of the data set is $0.35 \ \mu g/m3$ just above the HQ=0.1 line but substantially below HQ = 1.
- The true mean concentration 0.089 μ g/m3 is below 10-6 total cancer risk (TCR) of 0.48 μ g/m3
- Thus, the correct decision if all the data from several years of monitoring was available would be "do not mitigate" if the action levels were set at 10-6 TCR and HQ=1. Mitigation would only be undertaken if HQ=0.1 was used as an action level.
- Sun Devil Manor has a broad data range, which makes decision making with a limited number of samples difficult.

SDM Daily Economics Results

			Sample		Mitigation	Total
Risk Screening Metric	Sampling Rule	Samples	Cost	Mitigate	Cost	Cost
1e-4canrisk	ITS Triggered	12	\$66,600	No	\$0	\$66,600
1e-4canrisk	Random	12	\$64,800	No	\$0	\$64,800
1e-4canrisk	Seas	96	\$518,400	No	\$0	\$518,400
1e-5canrisk	ITS Triggered	12	\$66,600	No	\$0	\$66,600
1e-5canrisk	Random	12	\$64,800	No	\$0	\$64,800
1e-5canrisk	Seas	96	\$518,400	No	\$0	\$518,400
1e-6canrisk	ITS Triggered	2	\$12,600	Yes	\$11,500	\$24,100
1e-6canrisk	Random	12	\$64,800	No	\$0	\$64,800
1e-6canrisk	Seas	9	\$48,600	Yes	\$11,500	\$60,100
HQ=0.1	ITS Triggered	1	\$7,200	Yes	\$11,500	\$18,700
HQ=0.1	Random	2	\$10,800	Yes	\$11,500	\$22,300
HQ=0.1	Seas	3	\$16,200	Yes	\$11,500	\$27,700
HQ=1	ITS Triggered	3	\$18,000	Yes	\$11,500	\$29,500
HQ=1	Random	16	\$86,400	No	\$0	\$86,400
HQ=1	Seas	16	\$86 <i>,</i> 400	No	\$0	\$86,400
HQ=3	ITS Triggered	14	\$77,400	No	\$0	\$77,400
HQ=3	Random	47	\$253 <i>,</i> 800	No	\$0	\$253,800
HQ=3	Seas	49	\$264,600	No	\$0	\$264,600
Radon Over Ambient	Radon Over Ambient	47	\$1,800	Yes	\$11,500	\$13,300

- The lowest costs in the cancer risk evaluation are the more stringent action levels which lead to false positive mitigation decisions. ITS triggered is the lowest of those costs.
- Also, with the noncancer the lowest cost are the most stringent action levels.
- Radon only triggered preemptive mitigation is the overall lowest cost even though the mitigation is arguably not needed.

Book Store Study Site – Gaffney – AK, Commercial

- Heated connected storeroom
- Slab-on-grade foundation
- Unventilated
- Former dry-cleaning facility occupied by a bookstore
- Slab-on-grade, hot-water baseboard radiant heating system
- Max soil concentration = 1.3 mg/kg at 1.5-3.0 m bgs
- Max GW concentration = 1.3 mg/L at
 5.3 m bgs
- Higher concentrations at this site were observed in the late summer and attributed to soil temperature effects on shallow source term volatility (Barnes, 2017)

Wood stave pipe image from http://www.sewerhistory.org/photosgraph ics/pipes-wood/ Courtesy of the Idarado Mining Company, Ouray, Colorado.

Barnes, David L., and Mary F. McRae. "The predictable influence of soil temperature and barometric pressure changes on vapor intrusion." *Atmospheric Environment* 150 (2017): 15-23

Gaffney AK Soil Source Building, Four Daily Samples

Rule Description	sample of the four	At least one of the four samples taken will be \geq the 95% UCL of the mean of the VOC distribution	At least one of 4 samples > the 50th percentile of the cumulative exposure curve	The mean of 4 drawn samples > the 50% cumulative exposure	At least one of the four samples > 95th percentile of the underlying distribution
Only sample in					
heating season	0%	0%	0%	0%	0%
1 sample in					
heating season,					
1 outside of					
heating season	40%	30%	40%	11%	10%
1 sample per					
season	60%	43%	60%	7%	14%
Low temp decrease of 5F					
or more	75%	58%	75%	23%	18%
Random					
sampling	78%	66%	78%	32%	28%
Avg temp					
decrease of 5F					
or more	86%	75%	86%	41%	34%
Only sample outside of					
heating season	90%	79%	90%	49%	37%

- This data is from the Barnes study – no radon data available for these observations.
- Heating season performs much worse then random.
- Decreasing temperature as a signal for sampling performed well.

Sources of Uncertainty in this Effort

- The cases tested here do not represent the full diversity of US climates or building types.
- Even a continuous data set for one year is an imperfect estimate of long term exposure, because a "cold winter" and "warm winter" can be very different from each other.
- The smaller data sets (i.e. Gaffney, Moffett are incomplete samples of even the years they were taken in because not every day was sampled).
- The accuracy of concentration measurements generally decreases as concentrations approach the detection limit.

Summary Across Multiple Sites – Sampling Analysis

- Results for two sample strategies were rarely highlighted here because they were generally substantially lower then the four sample strategies.
- Sampling four times in heating season worked well at most sites, but very poorly at Gaffney (Barnes study). (Vadose zone source)
- VI sampling approaches may need to be tailored to specific climate zones and conceptual site models
- Sampling once in each of four seasons often performed poorly.
- Sampling with Radon guidance often worked well, but not all sites had radon data to test.
- Sampling approaches performed better at the sites/locations that fit the classical stack effect and winter worst theory.
- Sampling rules give better reliability in predicting the mean than predicting the upper percentiles of the distribution.
- Seeing the 95th percentiles directly requires many samples even with guidance.

Summary of Economics Analysis Results

• The results of these economic analyses show that there can be dramatic differences in cost between sampling strategies employed at a particular site.

• Frequently with the assumptions used here cost advantages were provided by the radon only decision making, or the ITS guided sampling.

• Sampling costs tended to dominate over control (mitigation) costs in this analysis, and thus strategies that led to rapid decision making in favor of mitigation reduced total cost.

• Thus, counterintuitively in some cases more stringent action levels led to lower costs.

• Results are very sensitive to the action levels selected and the details of a given buildings concentration distribution. Therefore, more cases should be analyzed.

References/Acknowledgements – VA Site A

- Part of the data collection program at VA Site A was funded by the U.S. Navy under NESDI Project 554 and part under EPA ORD Large Buildings VI Project
- Jacobs, 2021, "NESDI 554 Findings Report Assessing Temporal Variability in Industrial Buildings during Vapor Intrusion Evaluations," Draft, Prepared for NAVFAC EXWC, January
- Lutes et al., 2021, "Driving Forces and Indicators of Vapor Intrusion Temporal Variability in an Industrial Building." Poster presented at the 30th AEHS West Conference, March 2021, <u>https://drive.google.com/file/d/1DNMmnRtFpKG941KUU17FOiXDUS0i3dXB/view</u>
- Lutes et al., 2021, "Temporal Variability in an Industrial Building –Time Series and Machine Learning Analysis," accepted for publication in GWMR
- Previous presentation as part of this workshop, including
 - Hallberg et al., 2020, "Vapor Intrusion (VI) Indicators, Tracers, and Temporal Variability of cVOCs in Industrial Buildings, DoD Virginia Site A – Climate Zone 4," <u>https://iavi.rti.org/assets/docs/05B_VA_site_A_Mar2020.pdf</u>
 - Hallberg et al., 2020, "Putting Spatial and Temporal Variation Together, DoD Virginia Site A Climate Zone 4," <u>https://iavi.rti.org/assets/docs/07b_Spatial_Temporal_Mar2020.pdf</u>
 - Lund et al., 2019, "Vapor Intrusion (VI) Indicators, Tracers, and Temporal Variability of cVOCs in Industrial Buildings, DoD Virginia Site A – Climate Zone 4," <u>https://iavi.rti.org/assets/docs/05_Lund_DoD%20VA%20Site%20A_EPA%20VI%20Wkshp_AEHS_Oct2019.pdf</u>

Indianapolis Site References/Acknowledgements

- Fluctuation of Indoor Radon and VOC Concentrations Due to Seasonal Variations, 2012; EPA/600/R-12/673 https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=247212
- Assessment of Mitigation Systems on Vapor Intrusion: Temporal Trends, Attenuation Factors, and Contaminant Migration Routes under Mitigated and Non-mitigated Conditions. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/397, 2015. <u>https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=308904</u>
- Simple, Efficient, and Rapid Methods to Determine the Potential for Vapor Intrusion into the Home: Temporal Trends, Vapor Intrusion Forecasting, Sampling Strategies, and Contaminant Migration Routes. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-15/070, 2015. https://cfpub.epa.gov/si/si public record report.cfm?Lab=NERL&dirEntryId=309644
- Indianapolis Research Duplex Total Database https://catalog.data.gov/dataset/indianapolis-research-duplex-total-database
- Lutes, C. C., Truesdale, R. S., Cosky, B. W., Zimmerman, J. H., & Schumacher, B. A. (2015). Comparing Vapor Intrusion Mitigation System Performance for VOCs and Radon. *Remediation Journal*, 25(4), 7-26.
- McHugh, T., Beckley, L., Sullivan, T., Lutes, C., Truesdale, R., Uppencamp, R., ... & Schumacher, B. (2017). Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex. *Science of the Total Environment*, 598, 772-779.
- Zimmerman, J. H., Lutes, C., Cosky, B., Schumacher, B., Salkie, D., & Truesdale, R. (2017). Temporary vs. permanent subslab ports: A comparative performance study. *Soil and Sediment Contamination: An International Journal*, (just-accepted), 00-00. http://www.tandfonline.com/doi/full/10.1080/15320383.2017.1298565
- Numerous conference presentations on this and other projects at: https://iavi.rti.org/WorkshopsAndConferences.cfm

Indianapolis Acknowledgements: Southeast Neighborhood Development Corporation, Brian Cosky, Rob Uppencamp (ARCADIS), Brian Schumacher and John Zimmerman (EPA)

References/Acknowledgements Sun Devil Manor

- Holton, C., Luo, H., Dahlen, P., Gorder, K., Dettenmaier, E., Johnson, P.C. Temporal Variability of Indoor Air Concentrations under Natural Conditions in a House Overlying a Dilute Chlorinated Solvent Groundwater Plume. *Environmental Science & Technology*, 2013, 47, 13347-13354. <u>https://doi.org/10.1021/es4024767</u>
- Holton, C., Guo, Y., Luo, H., Dahlen, P., Gorder, K., Dettenmaier, E., Johnson, P.C. Long-Term Evaluation of the Controlled Pressure Method for Assessment of the Vapor Intrusion Pathway. *Environmental Science & Technology*, 2015, 49, 2091-2098.
- Guo, Y., Holton, C., Luo, H., Dahlen, P., Gorder, K., Dettenmaier, E., Johnson, P. C. Identification of Alternative Vapor Intrusion Pathways Using Controlled Pressure Testing, Soil Gas Monitoring, and Screening Model Calculations. *Environmental Science & Technology*, 2015, 49, 13472-13482.
- Johnson, P. C., Holton, C., Guo, Y., Dahlen, P., Luo, H., Gorder, K., Dettenmaier, E., Hinchee, R. E. 2016. Integrated Field-Scale, Lab-Scale, and Modeling Studies for Improving Our Ability to Assess the Groundwater to Indoor Air Pathway at Chlorinated Solvent-Impacted Groundwater Sites. Strategic Environmental Research and Development Program (SERDP) Project ER-1686. Final Report, July. Available at https://www.serdpestcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Emerging-Issues/ER-1686/ER-16862
- Holton, C., Guo, Y., Luo, H., Dahlen, P., Gorder, K., Dettenmaier, E., Johnson, P. C. Creation of a Sub-Slab Soil Gas Cloud by an Indoor Air Source and Its Dissipation Following Source Removal. *Environmental Science & Technology*, 2018, 52, 10637-10646. DOI: 10.1021/acs.est.8b01188.
- Guo, Y., Holton, C., Luo, H., Dahlen, P., Gorder, K., Dettenmaier, E., Johnson, P. C. Influence of Fluctuating Groundwater Table on Volatile Organic Chemical Emission Flux at a Dissolved Chlorinated Solvent Plume Site. *Groundwater Monitoring & Remediation*, 2019, 39(2), 43-52.
- Guo, Y., Dahlen, P., Johnson, P. C. Temporal Variability of Chlorinated Volatile Organic Compound Vapor Concentrations in a Residential Sewer and Land Drain System Overlying a Dilute Groundwater Plume. *Science of the Total Environment*, 2020, 702, 134756. <u>https://doi.org/10.1016/j.scitotenv.2019.134756</u>
- Shirazi, E., Hawk, G. S., Holton, C., Stromberg, A. J., Pennell, K. Comparison of Modeled and Measured Indoor Air Trichloroethene (TCE) Concentrations at a Vapor Intrusion Site: Influence of Wind, Temperature, and Building Characteristics. *Environmental Science: Processes & Impacts*, 2020, 22, 802-811.
- Past conference presentations available at https://iavi.rti.org/workshops.html

Studies by researchers at Arizona State University (<u>SERDP ER-1686</u>), ASU and Colorado School of Mines (<u>ESTCP ER-201501</u>), and several others

References/Acknowledgements Gaffney Site

- Barnes, David L., and Mary F. McRae. "The predictable influence of soil temperature and barometric pressure changes on vapor intrusion." *Atmospheric Environment* 150 (2017): 15-23.
- Quantifiable Building and Environmental Factors Influencing Vapor Intrusion; Presentation at AEHS Fall Conference 2019; David Barnes, University of Alaska Fairbanks https://iavi.rti.org/workshops.html

Acknowledgement: David Barnes, University of Alaska Fairbanks