

Update & Status of USEPA's Vapor Intrusion Guidance

AEHS West Coast Conference San Diego, Calf. March 13, 2008

Presented by: Henry Schuver, DrPH, US EPA – OSW* *A personal perspective, does not represent Agency positions See: http://iavi.rti.org

Outline

History of EPA's development

Technical approachesEPA & ITRC

Path forward being considered

OSWER's 2002 Draft-Subsurface Vapor Intrusion Guidance

- Signed Nov. 22, 2002 (for use)
 - By OSWER Assist. Admin. (AA) Marianne Horinko
- Published in Federal Register Nov. 29, 2002
 - 90-day Comment Period (Nov. 29 Feb. 27)
- Guidance, Comments, & Training available at:
 - <u>http://www.epa.gov/correctiveaction/eis/vapor.htm</u>
 - http://www.epa.gov/edocket RCRA-2002-033
 - http://www.clu-in.org/conf/tio/vapor_021203/
 - http://iavi.rti.org (Indoor Air Vapor Intrusion database)

Tier 1- Primary Screening

OSWER's draft-Subsurface Vapor Intrusion Guidance

- "quickly identify ... any potential exists"
- Q1 Volatiles?
- Q2 Buildings?
- Q3 Immediate concerns?
 - May be due to a mixture and/or non-toxic
- If ... not ... "incomplete" ... proceed to Secondary Screening

Tier 2- Secondary Screening Q4 OSWER's draft-Subsurface Vapor Intrusion Guide

- Compare to numerical criteria
 - Measured or "reasonably estimated" conc. (GW, SG, IA)
 - Three risks levels 10-4, 10-5, 10-6 cancer (HI = 1)
- Q4 Generic criteria (based on observed=empirical)
- Q5 Semi-site-specific criteria (based on model)
- If ... not ... incomplete ... proceed to Site-Specific

Calculation of Soil Gas and Groundwater Generic Target Screening Levels (Ques. 4)

- F = 0.01 F = 0.01 F = 0.001
- Select indoor air target screening level.
- Shallow soil gas screening level (SGSL_{shallow}) is 10 times indoor air target screening level.

 $SVSL_{shallow} = IASL * 10$

 Deep soil gas screening level (SGSL_{deep}) is 100 times indoor air target level.

 $SVSL_{deep} = IASL * 100$

 Groundwater screening level (GWSL) is the aqueous concentration corresponding to a soil gas concentration 1000 times greater than the indoor air target level.

GWSL = IASL * 1000/Hc

Slide by Dr. H. Dawson

Secondary Screening (Ques. 5)

OSWER Vapor Intrusion Guidance

- Q5: Do media concentrations exceed semi-site specific criteria? (Table 3 (a, b ,c))
 - 'canned' J&E model-based
 - conservative model input parameters (all, but)
 - Soil type sand loam (color)
 - Depth to contamination:
 1 30 meters

OSWER's (2002) Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway (from Groundwater and Soils)

Q4

Q5

Q6

Appendices

OSWER's draft-Subsurface Vapor Intrusion Guidance

- A: Data Quality
- B: Conceptual Site Model
- C: Flow Charts
- D: Tables 1, 2, & 3
- E: Methods & Techniques
- F: Empirical Attenuation Factors
- G: J&E Model "Considerations"
- H: Community Involvement
- I: "Background"

OSWER VAPOR INTRUSION GUIDANCE Table 1. Chemicals Sufficiently Toxic to Pose an Inhalation Risk via Vapor Intrusic

View Selected Chemicals

Sub-Slab Concentrations at

Not a sample of the intruding vapors?

IA of 11DCE = 0.11 ug/m3

Using sub-slab *mean* – Alpha_{ss} = 0.11/16 = 0.0065Using sub-slab point $C - Alpha_{ss} = 0.11/0.94 = 0.118$

> 44 x

TCE

30

1,1-DCE

1,1,1-TCA

Workshop Slide Fall 2006

Workshop Slide March 2007 - Vapor Intrusion Assessment Multiple Lines of Evidence Investigative Approach

Technical approaches

EPA & ITRC

Web-based training was **co-sponsored** by the **US EPA** Office of Superfund Remediation and Technology Innovation

ITRC - Vapor Intrusion Pathway: A Practical Guide (2007) (Figure 3-1)

Site Investigation Flow Chart

Comparison of flowcharts EPA & ITRC

- EPA (2002)
 - Focused on the appropriateness of exits
 - Assumes a single line of evidence (media) could be used to screen out (i.e., make a reliable VI determination)
 - Even at the higher tiers
 - Less focused on the practical collection of data
- ITRC (2007)
 - Focused on collection of appropriate data
 - Less focused on the appropriateness of exits
 - Makes references to regulatory guidance for exits
 - Makes references to regulatory guidance for all policies

ITRC references EPA (2002) 16+ times

- Definitions: VI, VOCs, Chemicals (Table 1)
- Henry's constants
- Scope residential & non-residential settings
- CSM and DQO (Appendix B & D)
- Worst-case Buildings, 100 ft criterion
- Developing generic alphas
- Generic screening levels, development, & use
- Site-specific screening & J&E model
 - Awaits updated USEPA J&E model (w/ better inputs)
- Soil-gas measurement & screening levels
- Use of soil samples

ITRC also references regulatory guidance (state &/or federal) 19+ times

- Definitions: receptors, VI, VOCs, screening vs. action levels,
- Constraint to ITRC guidance, source of additional guidance,
- Constraint to screening values, ICs, OSHA
- Partner/overseer in the decision making process
- To determine:
 - When SS & IA samples are warranted
 - QA/QC levels
 - Distance criterion
 - When models can be used,
 - When mitigation is warranted
 - Soil-gas sampling criteria
 - Indoor air sampling criteria
 - Developing other default values
 - Use of Constituent ratios
 - Screening out with sub-slab data
 - Screening out with exterior or interior measurements

Part III

Path forward being considered

EPA is considering the benefits of using the ITRC (2007) framework

Vapor Intrusion Pathway: A Practical Guide

ITRC

- Organization of state technical experts
- Who have worked with responsible parties
- Evaluating available data and approaches to vapor intrusion

ITRC 2007 VI Guide

- Consensus document that:
 - provides a flexible framework
 - highlighting both
 - advantages and disadvantages
 - of a variety of tools
 - screening with various subsurface samples
 - more direct indoor air samples
 - exposure mitigation options

ITRC's Guide is based upon newer information and science

- Acknowledging the more recent understanding of the importance of evaluating
 - Multiple Lines of Evidence
 - when determining the potential for vapor intrusion into buildings

EPA's Supplemental Technical Documents

- EPA is considering developing the following additional technical documents:
- Drafts discussed today:
 - Background levels of contaminant vapors in non-impacted buildings
 - Database of vapor intrusion observations
- Available later in 2008:
 - Conceptual Site Model update and expansion to assist investigators to visualize the vapor intrusion processes and pathways
 - Johnson & Ettinger Model improvements to the ranges and compatibility of inputs

EPA is Continuing to Work on VI Issues

- Keeping pace with the rapidly developing science of vapor intrusion
 - EPA is Continuing the Dialogue with:
 - federal partners
 - state regulators
 - industry
 - academia
 - environmental groups, and
 - general public;
 - to continue to improve the science of vapor intrusion prevention

Today's Meeting Focuses on *Preliminary Drafts* of two documents:

- Database of vapor intrusion observations
 - See <u>http://iavi.rti.org/OtherDocuments</u>
- Background levels of contaminant vapors in nonimpacted buildings
 - Summary presentation today, paper not yet available
 - Participants can:
 - Hear Summaries of the Papers
 - Have an Opportunity for Comments
 - Interact with Expert Panels

Evidence-Based Approaches

- Increasing number & quality of observations:
 - Allows empirical approaches
 - Attenuation (today, just laying a foundation)
 - Media-concentration screening-values (soon?)
 - Decreasing reliance on theory
 - VI theory is evolving with observations
 - # factors influencing VI is still growing
 - Direction and range of influence (e.g., temporal)
 - Interaction of factors